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Time-reversal symmetry breaking and the statistical 
properties - -  of quantum systems 

Georg Lenzt and Karol Zyczkowskit 
t Fachkreich Physik, Universitat-GHS Essen, 4300 k n ,  Federal Republic of Germany 
t lnstylut F j r k i ,  Uniwersytet Jagielloriski, uI. Reymonta 4, 30059 Krakh, Poland 
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AbsImcL The breaking of the generalized time-revenal sy"etly of a quantum chaotic 
system corresponds to a Vansition from onhogonal to unitary ensembles of random 
matrices. Investigating this transilion for the circular ensembles of Dyson (applicable 
for timedependent, periodic systems) we demonstrate and  explain that there exists a 
relevant difference of the Wansition rate in mmparison with lhe Gausian ensembles 
appropriate for quantum conservative systems. 'Ine above supposition is supported by a 
numerical study of the eigenvalues and eigenvectors of the periodically kicked top. 

1. Introduction 

The statistical properties of quantized chaotic systems are known to be well described 
by ensembles of random matrices [1,2]. Depending on the symmetry of the system 
one of the three universal ensembles are appropriate: the orthogonal ensemble (oE) 
describes systems with an anti-unitary symmetry (generalized time-reversal symmetry) 
while the unitary ensemble (UE) characterizes systems without such symmetry [3]. The 
third class, the symplectic ensemble (SE), corresponds to systems where the Kramers 

Three Gaussian ensembles studied by Mehta (11 (GOE, GUE and GSE) are applica- 
ble for those conservative quantum systems, the classical counterparts of which exhibit 
global chaos. Related are the circular ensembles introduced later by w o n  [l] (COE, 
CUE and CSE) which allow one to describe the statistical properties of the classically 
chaotic, time-dependent, periodic systems. Interestingly the theory of random matri- 
ces predicts the same statistics of eigenvalues and eigenvectors for the corresponding 
Gaussian and circular ensembles [l]. 

The level spacing distribution P( S), often used to characterize spectral fluctua- 
tions, is well approximated by the Wigner surmise 

degeEereC+' W!!E (!?a!f-h%ger S p h  EEd eXK!!y one $%i-ufiitzry y!X?!et?y) [A1 -1. 

77 P ( S )  = -Sexp 
2 

030S4470,92Rl5539+13M17.5O @ 1992 IOP Publishing Ud 5539 



5540 G k n z  and K .Z!yczkowski 

for the orthogonal, unitary and symplectic ensemble, respectively [3]. It is worth 
noting that other measures of the statistical properties of the spectrum, like the two- 
point correlation function R,( s), the number variance C2( L)  or the spectral rigidity 
A , ( L ) ,  also have the identical form for both families of the Gaussian and circular 
ensembles (h the limit of large matrix size N). Also the eigenvector statistics, the 
distribution of the squared moduli of components P(y), is given for both kinds of 
ensembles (in the Limit of N - CO) by the same chi-square distribution [5,q 

where the number of degrees of freedom p is equal to 1 ,2  and 4 for OE, UE and 
SE, respectively, and (y) denotes the mean value of the eigenvector mmponent. The 
above results of the theory of random matrices describe with an amazingly high 
accuracy the statistical properties of various dynamical systems [2,6].  As a fourth 
universality class one can consider the diagonal matrices of real random elements in 
the case of Gaussian ensembles (or the unitary matrices with random eigenphases 
-. in the ._.- case -- of rirriilar -- encemhles). ...- .-- - Rnrh efisem!&?s d&p!ay p&safi $z t&t i~  h !heir 
spectra and are appropriate to describe classically regular systems [7]. 

Apart from systems pertaining to the different universality classes, one may con- 
sider a one-parameter family of systems which undergoes a continuous transition 
between two ensembles. Of great interest is the transition between the orthogonal 
and the unitary ensembles, since it corresponds to the breaking of a generalized 
anti-unitaly symmetry in a dynamical system. The influence of (partial) time-reversal 
symmetry breaking for the statistical properties of the spectrum was first observed 
in [SI. Similar results were obtained by analyses of the conductance fluctuations 
of mesoscopic systems in an external magnetic field [9, lo]. In addition the OE-UE 
transition has been studied for model dynamical systems like billiards in a magnetic 
field [ll], Aharonov-Bohm billiards, the coupled spin system [12] or the periodically 
kicked top [13]. 

In this work we investigate the COE-CUE transition and point out the important 
difference in comparison with the corresponding GOE-GUE transition. It is shown and 
explained why the model of the Dyson gas [14], giving a correct picture of the latter 
transition can not be directly applied for the circular ensembles. 

In the following section, we compare the Gaussian and the clrcular ensembles 
during the OE-UE transition. We start with a somewhat formal discussion of the 
Dyson model and show that it provides the correct description of the transitions 
between different Gaussian ensembles of Hermitian matrices [15]. An analogous 
discussion of the circular ensembles explains why the Dyson model in its original 
form [14,16] cannot describe the transition between these ensembles. 

'lb support our observation by means of a numerical study we have chosen the 
model of the periodically kicked top for which special cases belonging to all three 
..-:..o..lnl:nv Imr\.. .n I L  1 7 l  Thk m d - 1  i. h.i-flrr reri l ld in reetinn '2 w h e w  ",,,"*,"~,,,~ *,POI*D a,* N L V W . .  ,",L',. I L . L I  ..._I. Y "..V.., .--..-" .I. I--..".. ., .... -.- 
the statistical properties of the spectrum (quasi-energies) are discussed. Section 4 
shows how the WE-CIJE transition may be analysed by a study of the eigenvector 
statistics or the localization entropy. The last section contains concluding remarks 
and a list of open questions. 
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2. Gaussian versus circular ensembles 

A transition between Gaussian ensembles of random matrices might be represented 
by the following model Hamilton operator [U] 

H = H , + X V  (5) 

where X is a control parameter and the operator V represented by a random matrix 
plays the role of a perturbation which breaks a symmetry of the system (e.g. spatial 
parity (31, isospin parity [U] or time-reversal symmetry 1131). The influence of the 
perturbation AV depends on the size N of the matrix. 'Ib mmpare transitions 
for matrices of different size N it is possible to introduce a dimension-independent' 
transition parameter AD = AD(N,X) .  For simplicity we assume V to have zero 
mean (yj) = 0. The distribution of H reads 

where P,(H,)  and Q(V) are probability distributions and Jd[. . .] denotes an inte- 
gration over the ensemble. This expression can be rewritten in an obvious way as a 
convolution of the initial distribution of H, with a propagator TA 

PA = Po * TA 

TA(G) =/d[V]Q(V)6(G-XV).  

Let us now remember the main idea of the Dyson model considering a Brownian 
motion in the space of Hermitian matrices. Time evolution of a given random matrix 
H ( t )  from time 1 to t + 6 t  under the influence of the noise V is given by [14] 

H ( t  + at)  = H ( 1 )  + 6 V .  

F,+&t := Ft * T a .  

(9) 

This equation defines the corresponding distribution Pt;+&' of H ( t  + at)  

('0) 

In the Dyson model the probability distribution of the noise Q(V) is given by one of 
the Gaussian ensembles. As a direct consequence of this particular choice of Q( V) 
the propagator TA has the following property: 

In the above we introduced the nonlinear rescaling between the time 1 and the control 
parameter X 

X( t )  = 6. (12) 

The Dyson model ((9) and (10)) is thus equivalent to the description given by (5), (7) 
and (9, because for all times t the probability distribution pt is equal to PA with 
a given initial condition Po. In consequence the dimension-independent transition 
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parameter AD of the Dyson model is related to the control parameter X of the 
ensemble (5) by [16,19] 

G Lenz and K zyczkowski 

(13) A 2 D -  e ( V )  

where Q represents the density of eigenvalues and (d) denotes the mean squared 
matrix element of V. The above relation has been verified by a numerical study of 
random Hermitian matrices [19]. 

The discussion of the circular ensembles starts with the observation that the 
Fioquet operator of a periodically kicked system can be written in the following 
general form [3,13] (see also section 3) 

U = Uoe'S" - - U0W* (14) 

where the parameter n controls the strength of the perturbation V. In analogy with 
(6) the distribution of the unitary matrix U may be represented by the integral 

P,(W = / d l U 0 I  d(W1 Po(Uo)Q(W)6(U- '~~W*) .  (15) 

This expression can also be rewritten in the form of a convolution between the initial 
distribution and a propagator 7'. 

P, = Po * T, 

T,(Y) = d[W] Q(W)6(Y- 'W")  / 
The convolution Over the unitary group f t g ( Y )  = J d[W] f ( W ) g (  W-IY)  is a 
straightfonvard generalization of the more common definition. The delta function is 
normalized to unity d[W] 6(Y-'W) = 1 and centred Over unity in the sense that 
for all functions f : Y + R the equation f ( Y )  = Jd[W] f (W)6(Y- 'W) is valid. 

The Dyson model for the circular ensembles concerning a random walk in the 
space of the unitary matrices can be obtained in the following way: 

U ( i  -t 6 t )  = U ( t ) W f i .  (18) 

A motion of the distribution of U is defined by this random walk as in the case of 
the Gaussian ensembles. In complete analogy to (IO) we get 

P,:+6i = pi * T f i .  (19) 

The Dyson model is obtained from the process (19) by making the assumption that 
the matrix W is distributed according to one of the circular ensembles. In full 
analogy with the prediction (13) for Gaussian ensembles one obtains for the transition 
nor~mntnr U 
p " ' . " L . u L u .  'LD 

IC,, = n 2 2  e (U 2 ). 

In this case (U*) is the mean squared matrix element of V = -ilog(W). A 
slightly different approach to the Dyson model has been proposed recently by 
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Pandey and Shukla 1161. They made an analogous, but equally illegitimate as- 
sumption that the random walk in the space of unitary matrices is described by 
U( t + 6 t )  = U (  t) exp [;&VI, where V belongs to a Gaussian ensemble. 

In contrast to the case of the Gaussian ensembles, where in (11) one used explicitly 
the property that a convolution of two Gaussian distributions delivers a Gaussian 
distribution, there is no way to reconcile (19) with the correct formulation of the 
transition (16), because the functional equation for ~ ( t )  

(21) 
! 

T&(fl+f2) = T&(f,) * TX(f2) 
has no non-trivial solution in the circular case. The multiplication in the space of 
matrices is not commutative (in contrast to the addition in the space of Hermitian 
matricesj. in consequence the convoiution in the right-hand side of the above equa- 
tion is not commutative, as it is imposed by the left-hand side. Therefore it has to 
be expected that for the timedependent dyhamical systems described by the circular 
ensembles the transition parameter will not be given by (20). In the following para- 
graphs we support this conclusion by a numerical investigation of a model system 
capable of showing the COE-CUE transition. 

\ 

3. Kicked top-eigenvalues 

The model of the kicked top has been known in literature for a long time. For 
a detailed discussion we refer to the papers of KuS et a1 [17,200] and the work 
of Mikeska and Frahm 1211. The model can be considered as a spin rotating in 
a magnetic field and periodically twisted around perpendicular axes by nonlinear 
rotations. The result of one particular scenario [17] is the following Floquet operator 
that shifts the wavefunction from one period to the next 

The parameters K and 9 determine the power of the nonlinear kicks and p depends 
on the magnetic field. The operators Ji are the conventional angular momentum op- 
erators defined by the commutation relation [ J , ,  Jk] = irikrJI. The integer number 
j is the length of the spin J 2  = j ( j  + l), and is inversely proportional to Planck's 
constant h. 

For large enough values of the parameters p and 9 the eigenphases and eigen- 
vectors of U, have the statistical properties described by the m E  [6,17,20,21]. The 
other nonlinear kick around the z-axis destroys the generalized time-reversal symme- 
tly [3] T = exp[ipJ,] exp[irrJ,]T, (To is the conventional time-reversal symmetry) 
of Uo. Therefore the operator U displays CUE fluctuations for sufficiently large 
values of the parameter n (n 1). Making use of the fact that the quasi-energy 
density Q is proportional to j in the system studied and calculating the variance 
( u 2 )  = ( ( J : / Z j ) 2 )  o( j ,  one gets from (20) the prediction of the Dyson model for 
the transition parameter 

(23) 1'- - .3 2 
D - J  n '  
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Blgure 1. ?he nearest-neighbour distribution (24) is plotted for several values of A. 
The dashed curve slands for lhe Wgner surmise for the orlhogonal ensemble and the 
dashdotted curve for the unilaly ensemble. 

We shall now proceed to the numerical investigation of the dynamical system (22) and 
demonstrate differences between its transition law and the above relation resulting 
from the Dyson model. 

The ensemble (5) describing the oE-UE transition for 2 x 2 Gaussian Hermitian 
matrices gives a simple expression for the spacing distribution [U] 

where erf(x) stands for the standard error function, erf(x) =2/fiJ:exp[-E2],dE. 
By varying the h.ee parameter X between 0 and 00 one gets a family of distributions 
interpolating between the Wlgner surmises for the OE and the LE (see figure 1). 
Interestingly this distribution provides an approximation of the nearest-neighbour 
distribution of the eigenphases of the operator U defined by (22) even for large 
values of j to an astonishing degree of accuracy [13]. 

By fitting the distribution (24) to the numerically obtained nearest-neighbour 
distribution the following simple relation between the fitting parameter X and the 
perturbation parameter n was reported [U]: 

(25) 2 X = m n .  

This result, where m stands for a proportionality constant, has been confirmed by 
a more extensive numerical investigation. Figure 2 presents the result of fitting the 
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Figure 2 n e  mnlml parameter A, obtained by fitting equation (24) to histograms of 
spacing distributions of the kicked tap (U), is depicted as a function of d. The data 
are well approximated by a straight line. 

I - , I , , , I : , , ?  

300 500 150 1000 

Log,dj I 
Figure 3. D e  logarithm of the gradient m of the straight line shown in figure 2 is 
plotted as function of the logarithm of j .  Ihe slraight line obtained by linear regression 
has the slope OL = 1.53 It 0.04. 

nearest-neighbour distribution of the kicked top (22) (j = 500) with the distribution 
(24). Of special interest is the dependence of the coefficient m on the matrix size de- 
termined by the spin length j. By investigating matrices U of l l  different dimensions, 
we attained the following scaling law (see figure 3) 

m ( j )  Y j a  (2% 

where the best fit of the exponent a gave a = 1.53 zk 0.04. Setting the value 
of a equal to 3/2 and using the relation (25) one has X Y j3/’n2, where X is 
the parameter in the distribution (24) which was obtained for a 2x2 ensemble of 
Hermitian random matrices undergoing the transition (5). In the Hermitian case the 
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4 """ i l l  I U U U  
nnn 
L"" 

4 "" 
L U U  

L w d j  1 
Figure A Tne logarithm of the value of I ( ~  necessary to complete the transition of 
the Cz statistics up to 90% is plotted as a function of the logarithm of j. By linear 
regression of the data p i n t s  we get a straight line with gradient -0.81 i 0.03. 

0 ,005 ,010 , 0 1 5  . o n  ,025 
x 

Flgum 5. ?he numerica!ly obtained Cz Statistics (j = 1000) is plotted as a funclion of 
z = %'. Tne uppcr dashed line is the OE value for C2(1). the lower dashed line the 
corresponding VE value. Tne CUNe is the random matrix prediction C 2 ( h 7 )  of [lh,22] 
as a function of z where IC z! zi. ?he dashed cuwes above and below the solid curve 
denotc the statistical error. 

dimension-independent transition parameter A given by (13) is proportional to A'. In 
the Same manner we treat the unitary ensembles and define a dimension-independent 
transition parameter I i ,  zz Xz. The experimentally found dependence reads 

IC, = j3n4 

in a clear discrepancy with the prediction (23) of the Dyson model. Since the distri- 
bution (24) was found for Hermitian 2x2 matrices this argument is not rigorous and 
has to be confirmed in an independent way by studying a measure for which precise 
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predictions of the random matrix theory are known. For this purpose we shall we 
the number variance [1,22]. This quantity calculated for unfolded spectra with an 
average nearest neighbour spacing of unity ( { S )  = 1) is equal to the variance of the 
number of eigenvalues n in a stretch of length L = (n) of the quasi-energy axis 

q;,.,(L) = ((. - ( n ) V  (4 = L .  (28) 

'Ib study the scaling behavior of the transition we evaluated a critical value of n,, 
necessary to complete the transition OE-UE (for L = I) up to 90% 

The result of the numerical calculation is shown in figure 4. In agreement with our 
former resuit we obtain 

(30) K c  j - 4 2  

where in this case the numerically obtained value of the exponent is a = 1.62f0.06.  
The transition curve obtained numerically with j = 1000 for C z ( l )  as a function of 

Mehta and Pandey [U] for C2( ICD). If we replace the relation (20) (ICD zz K ~ )  by 
a more general trial statement IC,, a nY we get a perfect coincidence between the 
data and the theoretical curve for v = 4.0 f 0.2. This procedure has been repeated 
for several values of j and L,  providing a convincing argument that 

n' & depided Ui S. miid iiie iiimreiiai Prediciion obidined by 

- -e  I< = j 3 K 4  (31) 

is the appropriate parameter for the COE-CUE transition. 

4. Kicked top-eigenvectors 

Eigenvector statistics provides, beside the eigenvalue statistics, a sensitive indicator 
for chaos in the underlying classical system [6,23,24]. Therefore we also investigated 
the scaling behaviour of the eigenvector statistics for the transition COE-CUE. We 
already reported [23] that it is possible to describe the distribution of the modulus of 
an eigenvector component y = 1(n1+)I2 between the orthogonal and unitary case by 
a simple expression 

where I, denotes the modified Bessel function. When b changes between 1 and 2 the 
distribution (32) k transformed from the xg distribution (4) with p = 1 (OE) to the 
x; distribution (4) for p = 2 (uE). 'RI study the scaling behaviour of the eigenvectors 
we evaluated the critical value of the kick strength nC necessary to obtain a prescribed 
value of the fitting parameter b 

p(;,ec)(Y) = p b ( Y ) .  (33) 
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Fiyn d Eigenvector statistics of the top (21) with j=ZGll, n= 0.27. ?he thick solid 
curve denotes the k s t  fit of Pb(y), (b= LIS), the thin solid curve the best fit of Pe(y), 
( p  = 1.5). ?he dashed curves mrrespond U) Po=,(y), foe) and Pg.2 (UE). 

1 ,  

2 4 6 
L n l j l  

QUE 1. Dependence of the critical wlues of K= on the dimension j on a logarithmic 
6cdle. Ihe fitted straight lines mnfirm the scaling khaviour of the eigenvector statistics. 
me slopes of the straight lines are: -0.52 (for the lower curve. b = 1.18)  and -0.54 
(for the upper curve, b = 1.42). 

The distribution t ' ( j , 6 c ) ( y )  denotes the experimental result obtained for given values 
of j and K' (note that the value of the critical strength K~ might be different from 
that entering (29) and (30)). Figure 6 shows a result of such an evaluation of K' 

for b = 1.18. This procedure has been repeated for a number of dimensions j and 
another value of b = 1.42. The result is presented in figure 7. It follows that the 
transition parameter for eigenvectors ke is 

ke = j K z .  (34) 

The Dyson model predicts the same scaling law (ICD = j3n2) for the transition 
measures concerning eigenvalues and eigenvectors [19,25]. In our study we have 
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1.0 

UOE 

0 20 40 
fe  

Figure U Wdlh of the eigenvector distlibulion d as a function of the transition parameter 
kc = j d  for j = 400 slamg: j = 200 crosseh j = 100 diamonds, j = 50 Irianpes, 
j = 25 squarer me dashed horizontal lines denole the limiting values for OE and UE. 

shown that the statistical properties of eigenvectors have a different scaling law. 
The transition rate for the eigenvectors is slower in the sense that the dimension- 
independent transition parameter is proportional to j3 I2  for eigenvalues and to j 
for the eigenvectors. This is in agreement with a random matrix model designed to 
mimic the transition between regular and chaotic motion (261. lb study the transition 
of the eigenvector distribution in another independent way, we looked at the variance 
of the variable log,,[y] 

m 

u2 = 1 dyP(y)(loglo(y) - (hdy)))2. (35) 

For the three universality classes p = 1 , 2 , 4  one attains 

where C is the zeta function of Riemann [27]. For the interesting limiting cases of 
the orthogonal and the unitary ensemble one has 

During the transition U decreases monotonously starting from uOE to uUE. This 

in a similar manner as Cz( L ) .  Unfortunately no relation between the parameters b 
and K is known. lb check the scaling law (34) we plotted in figure 8 the mean square 
deviation U as a function of the transition variable ke = jls2 for various values of 
j and IC. It is evident that all points lie at one single curve. We have therefore 
confirmed the scaling law (34) in a compkmentary way. 

p*x’r$ 3x7 Ge;&?re he .a& &$ *E ifin,:=:=: f=: tiz+:eJe:s*! SyESe:? h:&jiy, 



5550 G k n z  and K zyczkowski 

It h worth.stressing that the statistical properties of eigenvectors may also be 
studied by other quantities such as the Shannon entropy, the localization length or 
the inverse participation ratio. All these statistical measures vary with the same rate 
as the variance CT or the critical kick strength in contrast to the statistical measures 
of the spectral fluctuations like C2. 

5. Concluding remarks 

’ltansitions between different universality classes of Gaussian ensembles are well 
described by the Dyson model of Brownian motion in space of random Hermitian 
matrices. This approach is useful to represent the process of breaking of the time- 
reversal symmetry in classically chaotic, conservative systems, which corresponds to 
the GOE-GUE transition. 

The classically chaotic, timedependent periodically driven systems are described 
by the circular ensembles of unitary matrices. Our study shows that the original 
Dyson model of random walk is not capable of characterizing the analogous transi- 
tions between circular ensembles. Numerical analysis of a simple dynamical system-a 
periodically driven toprevealed a different scaling of the transition COE-CUE than 
that predicted by the Dyson model and reported for the Gaussian ensembles. More- 
over, it has been shown that the transition rate is different when concerning the 
properties of the spectrum (eigenvalues) and the Shannon entropy or localization 
length (eigenvectors). 

The original version of the Dyson model fails to correctly dcscribe transitions 
between circular ensembles. However a fair coincidence with the numerical data is 
regained when ansatz (31) is made. It is not at all clear why such an assumption 
provides a correct prediction of the transition rate. This point might be clarified by 
a rigorous investigation of the ensemble defined by equation (16), which is obviously 
not equivalent to the ensemble of unitary matrices determined by the Dyson process. 

Further work is needed to find a necessaly modification of the Dyson model in 
order to make it applicable for circular ensembles. The numerical investigation of 
the modified model should be performed not only on the dynamical systems like the 
kicked top but also directly on the random unitaly matrice-members of the circular 
ensembles. 
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